Yu's Research Group
School of Materials Science and Engineering.
Center of Electron Microscopy, Zhejiang University.

      Structural alloys are often strengthened through the addition of solute atoms. However, given that solute atoms interact weakly with the elastic fields of screw dislocations, it has long been accepted that solution hardening is only marginally effective in materials with mobile screw dislocations. By using transmission electron microscopy and nanomechanical characterization, we report that the intense hardening effect of dilute oxygen solutes in pure α-Ti is due to the interaction between oxygen and the core of screw dislocations that mainly glide on prismatic planes. First-principles calculations reveal that distortion of the interstitial sites at the screw dislocation core creates a very strong but short-range repulsion for oxygen that is consistent with experimental observations. These results establish a highly effective mechanism for strengthening by interstitial solutes...

Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded inmystery. Using micro-compression and in situnano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications.

      Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of B1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness. Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.

     Sublimation is an important endothermic phase transition in which the atoms break away from their neighbors in the crystal lattice and are removed into the gas phase. Such de-bonding process may be significantly influenced by dislocations- the crystal defect that changes the bonding environment of local atoms. By performing systematic defects characterization and in situ transmission electron microscopy (TEM) tests on a core-shell MgO-Mg system, which enables us to “modulate” the internal dislocation density, we investigated the role of dislocations on materials’ sublimation with particular focus on the sublimation kinetics and mechanism. It was observed that the sublimation rate increases significantly with dislocation density. As the density of screw dislocations is high, the intersection of screw dislocation spirals creates a large number of monatomic ledges, resulting in a “liquid-like” motion of solid-gas interface, which significantly deviates from the theoretically predicted sublimation plane...
Nature materials, 21, 290–296 (2022) |https://doi.org/10.1038/s41563-021-01144-7

      Two-phase titanium-based alloys are widely used in aerospace and biomedical applications, and they are obtained through phase transformations between a low-temperature hexagonal closed-packed α-phase and a high-temperature body-centred cubic β-phase. Understanding how a new phase evolves from its parent phase is critical to controlling the transforming microstructures and thus material properties. Here, we report time-resolved experimental evidence, at sub-ångström resolution, of a non-classically nucleated metastable phase that bridges the α-phase and the β-phase, in a technologically important titanium–molybdenum alloy. We observed a nanosized and chemically ordered superstructure in the α-phase matrix; its composition, chemical order and crystal structure are all found to be different from both the parent and the product phases, but instigating a vanishingly low energy barrier for the transformation into the β-phase. This latter phase transition can proceed instantly via vibrational switching when the molybdenum concentration in the superstructure exceeds a critical value. We expect that such a non-classical phase evolution mechanism is much more common than previously believed for solid-state transformations.
Nature communications, 13, 2789 (2022). https://doi.org/10.1038/s41467-022-30524-z

      High-entropy alloys (HEAs), although often presumed to be random solid solutions, have recently been shown to display nanometer-scale variations in the arrangements of their multiple chemical elements. Here, we study the effects of this compositional heterogeneity in HEAs on their mechanical properties using in situ compression testing in the transmission electron microscope (TEM), combined with molecular dynamics simulations. We report an anomalous size effect on the yield strength in HEAs, arising from such compositional heterogeneity. By progressively reducing the sample size, HEAs initially display the classical “smaller-is-stronger” phenomenon, similar to pure metals and conventional alloys. However, as the sample size is decreased below a critical characteristic length (~180 nm), influenced by the size-scale of compositional heterogeneity, a transition from homogeneous deformation to a heterogeneous distribution of planar slip is observed, coupled with an anomalous “smaller-is-weaker” size effect. Atomic-scale computational modeling shows these observations arise due to compositional fluctuations over a few nanometers. These results demonstrate the efficacy of influencing mechanical properties in HEAs through control of local compositional variations at the nanoscale.
Atomic-scale observation of non-classical nucleati
Anomalous size effect on yield strength enabled by
Origin of dramatic oxygen solute strengthening...
Strong Crystal Size Effect on Deformation Twinning
Nanoscale origins of the damage tolerance of...
in Situ Observation on Dislocation-Controlled...